Identify and return significantly-enriched terms for each gene module in a Celda object or a SingleCellExperiment object. Performs gene set enrichment analysis for Celda identified modules using the enrichr.
geneSetEnrich(
x,
celdaModel,
useAssay = "counts",
altExpName = "featureSubset",
databases,
fdr = 0.05
)
# S4 method for SingleCellExperiment
geneSetEnrich(
x,
useAssay = "counts",
altExpName = "featureSubset",
databases,
fdr = 0.05
)
# S4 method for matrix
geneSetEnrich(x, celdaModel, databases, fdr = 0.05)
A numeric matrix of counts or a
SingleCellExperiment
with the matrix located in the assay slot under useAssay
.
Rows represent features and columns represent cells. Rownames of the
matrix or SingleCellExperiment object should be gene names.
Celda object of class celda_G
or celda_CG
.
A string specifying which assay
slot to use if x
is a
SingleCellExperiment object. Default "counts".
The name for the altExp slot to use. Default "featureSubset".
Character vector. Name of reference database. Available databases can be viewed by listEnrichrDbs.
False discovery rate (FDR). Numeric. Cutoff value for adjusted p-value, terms with FDR below this value are considered significantly enriched.
List of length 'L' where each member contains the significantly enriched terms for the corresponding module.
library(M3DExampleData)
counts <- M3DExampleData::Mmus_example_list$data
# subset 500 genes for fast clustering
counts <- counts[seq(1501, 2000), ]
# cluster genes into 10 modules for quick demo
sce <- celda_G(x = as.matrix(counts), L = 10, verbose = FALSE)
gse <- geneSetEnrich(sce,
databases = c("GO_Biological_Process_2018", "GO_Molecular_Function_2018"))
#> Error in handle_url(handle, url, ...): Must specify at least one of url or handle