Render a stylable heatmap of count data based on celda clustering results.
celdaHeatmap(
sce,
useAssay = "counts",
altExpName = "featureSubset",
featureIx = NULL,
nfeatures = 25,
...
)
# S4 method for SingleCellExperiment
celdaHeatmap(
sce,
useAssay = "counts",
altExpName = "featureSubset",
featureIx = NULL,
nfeatures = 25,
...
)
A SingleCellExperiment object returned by celda_C, celda_G, or celda_CG.
A string specifying which assay slot to use. Default "counts".
The name for the altExp slot to use. Default "featureSubset".
Integer vector. Select features for display in heatmap. If
NULL, no subsetting will be performed. Default NULL. Only used for
sce
containing celda_C model result returned by celda_C.
Integer. Maximum number of features to select for each
gene module. Default 25. Only used for sce
containing
celda_CG or celda_G model results returned by celda_CG or
celda_G.
Additional parameters passed to plotHeatmap.
list A list containing dendrogram information and the heatmap grob
`celdaTsne()` for generating 2-dimensional tSNE coordinates
data(sceCeldaCG)
celdaHeatmap(sceCeldaCG)
#> TableGrob (5 x 6) "layout": 9 grobs
#> z cells name grob
#> 1 1 (2-2,3-3) col_tree polyline[GRID.polyline.16]
#> 2 2 (4-4,1-1) row_tree polyline[GRID.polyline.17]
#> 3 3 (4-4,3-3) matrix gTree[GRID.gTree.19]
#> 4 4 (3-3,3-3) col_annotation rect[GRID.rect.20]
#> 5 5 (3-3,4-4) col_annotation_names text[GRID.text.21]
#> 6 6 (4-4,2-2) row_annotation rect[GRID.rect.22]
#> 7 7 (5-5,2-2) row_annotation_names text[GRID.text.23]
#> 8 8 (4-5,6-6) annotationLegend gTree[GRID.gTree.31]
#> 9 9 (4-5,5-5) legend gTree[GRID.gTree.34]