Wrapper for identifying genes with significant changes with respect to one of the TSCAN pseudotime paths

runTSCANDEG(inSCE, pathIndex, useAssay = "logcounts", discardCluster = NULL)

Arguments

inSCE

Input SingleCellExperiment object.

pathIndex

Path index for which the pseudotime values should be used. This corresponds to the terminal node of specific path from the root node to the terminal node. Run listTSCANTerminalNodes(inSCE) for available options.

useAssay

Character. The name of the assay to use for testing the expression change. Should be log-normalized. Default "logcounts"

discardCluster

Cluster(s) which are not of use or masks other interesting effects can be discarded. Default NULL.

Value

The input inSCE with results updated in metadata.

Author

Nida Pervaiz

Examples

data("mouseBrainSubsetSCE", package = "singleCellTK")
mouseBrainSubsetSCE <- runTSCAN(inSCE = mouseBrainSubsetSCE,
                                useReducedDim = "PCA_logcounts")
#> Wed Jul 26 15:00:39 2023 ... Running 'scran SNN clustering' with 'louvain' algorithm
#> Wed Jul 26 15:00:39 2023 ...   Identified 2 clusters
#> Wed Jul 26 15:00:39 2023 ... Running TSCAN to estimate pseudotime
#> Wed Jul 26 15:00:40 2023 ...   Clusters involved in path index 2 are: 1, 2
#> Wed Jul 26 15:00:40 2023 ...   Number of estimated paths is 1
terminalNodes <- listTSCANTerminalNodes(mouseBrainSubsetSCE)
mouseBrainSubsetSCE <- runTSCANDEG(inSCE = mouseBrainSubsetSCE,
                                   pathIndex = terminalNodes[1])